

Development of a Well-Testing Program for a CO₂ Sequestration Pilot in a Brine Formation

Christine Doughty, Karsten Pruess, and Sally M. Benson
Earth Sciences Division
E.O. Lawrence Berkeley National Laboratory
Berkeley, California 94720

Second Annual Conference on Carbon Sequestration May 5-8, 2003

Outline

- Geologic sequestration in brine formations
- Frio CO₂ sequestration pilot
- Purpose of well-testing program
- Well-test plan
- Example simulation results
- Conclusions

Geologic Sequestration in Brine Formations

- Many localized CO₂ point sources
- Large volumes of suitable brine formations
- Well characterized
- Deep-well injection of hazardous waste
- CO₂ injection technology for EOR

Frio CO₂ Sequestration Pilot

- Purpose Demonstrate injection of CO₂ into a brine formation with attendant monitoring and modeling to improve understanding of physical and chemical processes
- Geologic setting Upper Frio formation, a fluvial/deltaic depositional setting consisting of interleaved high-permeability channel sands and lowpermeability shales
- Applicability Huge volumes of similar formations throughout upper Texas gulf coast

South Liberty Pilot Site Structure

South Liberty Well Logs

- A, B, C sands are all potential targets
- Shales believed to form vertical seals
- Depth ~ 1500 m, CO₂
 supercritical
- No petroleum at these depths

Fault Block Structure

- Partially sealed compartment created by subvertical faults
- 15°dip (updip direction is NE, faults create potential trap)

Intra-Fault-Block Structure

Purpose of Well-Testing Program

- I. Pre-test site characterization to address hydrogeologic uncertainty
- II. Plume monitoring during pilot
 - Track movement of CO₂ plume
 - Estimate two-phase flow properties

In each phase, coordinate with and complement well logging, geochemical sampling, and geophysical surveys

Hydrogeologic Uncertainty

- Fault-block bounding faults: barriers or conduits for flow?
- Continuity of inter-sand shale layers
- Connectivity of sand layers across intra-fault-block faults
- In situ phase conditions
 - —No gas
 - —Dissolved gas
 - —Immobile gas
- Flow and transport properties

Well-Test Plan I

Pre-Test Activity	Purpose	Duration
None	Recovery period after completion of new well and workover of Well SGH-4; allow pressures and temperatures to return to undisturbed conditions	1-2 weeks
Pump test 1 Well SGH-4 C sand at 50 gpm	Decrease pressure around the well; look for evidence of exsolution of dissolved gas in P vs. t. Save water for subsequent injection test	1-2 days
Injection test 1 New well C sand at 50 gpm	Increase pressure around the well; look for evidence of dissolution of gas in P vs. t	1-2 days
Pump test 2 New well C sand at 50 gpm	Same as pump test 1. Compare responses of two wells	1-2 days
Injection test 2 Well SGH-4 C sand at 50 gpm	Same as injection test 1. Compare responses of two wells	1-2 days
None	Pressure recovery	2 weeks
Pump test 3 New well C sand at 5 gpm	Estimate kH, investigate boundary effects. Save water for possible CO ₂ chaser	2 weeks
None	Pressure recovery	4 weeks

Well-Test Plan II

During-Test Activity	Purpose	Duration
Inject CO ₂ at 250 T/day	Create a plume that does not reach monitoring well. Pressure-transients reflect single-phase liquid conditions	1 day
Rest	Allow pressure recovery, opportunity for geophysics	2-4 days
Inject CO ₂ at 250 T/day	Create a plume that may reach monitoring well (or not). Pressure-transients reflect two-phase conditions	3 days
Rest	Allow pressure recovery, opportunity for geophysics	5 days
Inject CO ₂ at 250 T/day	Create a bigger plume – try to make sure it reaches the monitoring well	11 days
Rest		
Inject formation brine at 5 gpm	If CO ₂ has not reached monitoring well, try to get it there. If it has, study behavior of trailing edge of plume	2 weeks

Modeling Approach

- Radial model for in situ phase studies
 - —Pump or inject in one well
 - —Watch pressure and saturation transients at active well and monitoring well location
- 2D x,y model to study boundary effects, how wells respond to sequence of tests
- 3D x,y,z model for shale contunuity, sand connectivity, CO₂ injection

Radial Model Results – Pump Test

Radial Model Results – Pump Test

Radial Model Results – Injection Test

Example 3D Model Results 20 days of CO₂ injection, then rest for 1 year generic relative permeability

TOUGH2 Simulation: C. Doughty, Earth Sciences Division, Lawrence Berkeley National Lab.

Example 3D Model Results
20 days of CO₂ injection, then rest for 1 year
Frio-like relative permeability

TOUGH2 Simulation: C. Doughty, Earth Sciences Division, Lawrence Berkeley National Lab

Example 3D Model Results

Conclusions

- Pre-test site characterization
 - —Lateral boundary conditions
 - —Shale continuity
 - —Sand connectivity
 - —In situ phase conditions
 - —Flow and transport properties
- During-test plume monitoring
 - —Track CO₂ plume
 - —Estimate two-phase flow properties